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ABSTRACT: The response of a murine macrophage cell line exposed to a library of seven metal and metal oxide nanoparticles was
evaluated via High Throughput Screening (HTS) assay employing luciferase-reporters for ten independent toxicity-related signaling
pathways. Similarities of toxicity response among the nanoparticles were identified via Self-Organizing Map (SOM) analysis. This
analysis, applied to the HTS data, quantified the significance of the signaling pathway responses (SPRs) of the cell population ex-
posed to nanomaterials relative to a population of untreated cells, using the Strictly Standardized Mean Difference (SSMD). Given
the high dimensionality of the data and relatively small data set, the validity of the SOM clusters was established via a consensus clus-
tering technique. Analysis of the SPR signatures revealed two cluster groups corresponding to (i) sublethal pro-inflammatory responses
to Al2O3, Au, Ag, SiO2 nanoparticles possibly related to ROS generation, and (ii) lethal genotoxic responses due to exposure to ZnO
and Pt nanoparticles at a concentration range of 25-100μg/mL at 12 h exposure. In addition to identifying and visualizing clusters and
quantifying similarity measures, the SOM approach can aid in developing predictive quantitative-structure relations; however, this
would require significantly larger data sets generated from combinatorial libraries of engineered nanoparticles.

’ INTRODUCTION

There have been rising concerns that unintended exposure of
humans and other ecological receptors to engineered nanoma-
terials (eNMs) may result in adverse effects that differ from those
known for their bulk counterpart.1,2 Environmental protection
plans associated with the manufacture and use of eNMs requires
understanding nanobio interface interactions that govern the
biological activity and potential toxicity of nanomaterials. In this
regard, the rapid generation of complex toxicity data sets, inte-
grating in vitro information at both the molecular and cellular
levels with in vivo whole-organism data, has in tandem acceler-
ated the emergence of a new multilevel paradigm for toxicity
testing. An important goal of toxicity testing is to identify critical
biological pathways that, when perturbed, can lead to adverse
effects. Accordingly, high-throughput toxicity-pathway assays are
emerging as central elements of toxicity testing.3 Specifically,
high-throughput screening (HTS) aims to screen the toxicity of
nanoparticle libraries in a multivariate context that usually in-
cludes multiple cell lines, exposure times and nanoparticle
concentrations.4 HTS data analysis requires normalization to
remove systematic errors and for comparison and combination of
data acquired from different plates.5 Such data can then be used
to identify similarity patterns to construct eNM categories of

common mechanisms of action and thus support the develop-
ment of structure-activity nanotoxicity relationships.

Statistical techniques such as cluster analysis have proven
useful for “mining” the relationships hidden in multidimensional
cellular activity data sets.6 Hierarchical clustering and its applica-
tion to heat maps (i.e., mapping displays of cell activity data) are
commonly used in bioinformatics for the analysis of HTS data
sets. This clustering approach does not preserve the intrinsic
topology of the data (e.g., nanoparticles that are placed in con-
secutive leaves in the hierarchical tree structure may in fact be far
apart in the original data space). Self-Organizing Map7 analysis is
an alternative approach that provides an ordered two-dimen-
sional visualization of multidimensional HTS data where similar
nanoparticles assigned to nearby SOM units are also closer in the
HTS data space (i.e., it preserves the original distance relation-
ships). SOM provides more accurate and robust clustering speci-
fically for “noisy” data sets.8 SOM analysis has been shown to be
useful for the development of quantitative structure-activity

Received: October 27, 2010
Accepted: December 31, 2010
Revised: December 23, 2010



1696 dx.doi.org/10.1021/es103606x |Environ. Sci. Technol. 2011, 45, 1695–1702

Environmental Science & Technology ARTICLE

(QSAR) 9 and structure-property relationships (QSPR).10 SOM
has also been effectively used for the exploratory analysis of micro-
array data since, in contrast to the rigid structure of hierarchical
clustering (i.e., based on pairwise similarity that does not preserve
the distances between all of the elements in the data set) it allows
organization of data clusters such that cluster similarity can be
visually identified based on the proximity of SOM units relative to
each other in themap.11However, gene expression arrays andHTS
data sets of eNM toxicity differ markedly in the sample size (e.g.,
thousands to tens of thousands of genes), the latter usually being
a smaller data set (typically ∼10-100 nanoparticles in a specific
concentration range) but of higher dimensionality (e.g., combina-
tion of different cell lines, toxicity-pathways, and exposure times).
Smaller HTS data sets of higher dimensionality present a funda-
mental challenge of determining which clusters are truly represen-
tative of the actual physical domain.12 Consensus clustering can be
utilized to overcome the above difficulty by providing a quantitative
measure of cluster validity as demonstrated in a recent work on
nano-SAR development.13,14

In the current work, a strategy of SOM analysis, along with
consensus clustering 15 and multiscale bootstrap sampling,16 was
demonstrated for data mining of a small eNM library (seven
metal and metal oxide nanoparticles). Toxicity screening data
were obtained via measurements of the activity of ten toxicity-
related cell signaling pathways (hereinafter termed “signaling
pathways”) for macrophage cells. Grouping of similar cell signal-
ing pathway responses was accomplished via a consensus SOM
clustering approach that provided both a quantitative and visual
representation of pathway similarity and possible relationships.

’MATERIALS AND METHODS

Knowledge Extraction. The present approach for knowl-
edge extraction from nanoparticle (NP) HTS signaling-pathway
data is summarized in Figure S1 of the Supporting Information
(SI). In vitro HTS data measuring signaling pathway responses
(hereinafter termed “SPR”) (SI, Table S1) of macrophage cells
exposed to eNM were generated as described in the Supporting
Information. Briefly, data acquired from different HTS plates were
first normalized to account for systematic experimental errors. The
significance of the biological responses (i.e., data labeling), trig-
gered in macrophage cells exposed to eNMs, was quantified with
respect to responses observed in untreated cells using the ap-
proach described later in this section.17 SPR similarities were then

identified via SOM cluster analysis. Given the relatively small HTS
data set, consensus clustering was required for cluster validation.12,15

Subsequently, clusters of SOM units were identified along with
their associated dominant signaling pathways. Finally, an aver-
aged cluster pathway signature (i.e., profile with respect to the
pathway and time) was determined for each cluster in order to
evaluate the similarity among clusters.
Experimental Toxicity Data. Seven metal and metal-oxide

nanoparticles (Ag, Au, Pt, Al2O3, Fe3O4, SiO2, and ZnO with
respective primary diameters of 13, 12, 13, 12, 8, 19, and 20 nm)
were acquired from commercial sources (Table S1; SI) to test for
induction of toxicity-associated cell signaling pathways using a set
of RAW 264.7 luciferase reporter cell lines. Macrophages were
selected in this study because they constitute one of the principal
immune-system sentinels whose phagocytic activity makes them
likely to interact with eNMs upon exposure.18

In order to obtain stable luciferase reporter cell lines, RAW
264.7 (ATCC #TIB-71) murine macrophage-like cells were trans-
duced (see SI) with Cignal Lenti Reporters (SABiosciences Corp.,
US). Ten cell lines containing a unique transcriptional response
element (TRE) were stably transduced with each of the ten
pathway-specific reporters (SI, Table S1). An additional control
cell line was generated in which the TRE is absent (TRE-),
leaving only a basal promoter element upstream of the luciferase
gene. The TRE- data served as control samples (i.e., indicators
of cytotoxic effects of nanomaterials and other nonspecific events
affecting cell viability) and for data normalization, as well as com-
pensate for possible location dependent effects. Details of the
experimental protocol are provided in the Supporting Informa-
tion. Briefly, each individual reporter cell line was seeded with
2!104 cells per well in white 384 well plates (Thermo Fisher
Sci., NH, U.S., Cat#4334) with nanoparticle concentrations
spanning the range of 0.375-100 μg/mL (at 2-fold increases).
At specific times (i.e., t = 3, 6, 12, 24 h), luciferase levels pro-
duced, in response to nanoparticle exposure, were monitored via
Bright-Glo Luficerase Assay (Promega Corp., WI, U.S.).
TheHTS plate layout is provided in Figure 1. Cells in the wells

located in the two outer columns of the plate were untreated (i.e.,
served as a control indicative of the natural signaling pathway
responses). The remaining wells contained cells exposed to the
eNMs (Table 1). Well quadruplicates in each plate served to
account for natural (i.e., biological) and systematic (i.e., experi-
mental) variabilities.5 Luminescence data were acquired from
a set of 44! 384-well plates (i.e., one plate for each studied

Figure 1. Depiction of the experimental setup for the HTS assay and the data generation. Layout of a 384-well HTS plate (left) showing the location of
untreated samples (i.e., cell not exposed to eNMs) and the four replicate wells for each nanoparticle concentration. Four different plates were employed
to measure the activity of each of the 10 pathways (right) at different exposure times (3, 6, 12, and 24 h).
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signaling pathway plus TRE- control at each of the four exposure
times) producing a total of 16 896 luminescence data readings.
Data Preprocessing. Data normalization was performed in

two steps. First, in order to account for nonspecific luciferase
expression or alterations in cell viability, HTS data were normal-
ized by dividing the luminescence values in each well by the
luminescence values of the corresponding TRE- control cells
exposed to the identical experimental conditions (i.e., exposed to
the same concentration of nanoparticles). Second, for each plate,
the strictly standardized mean difference 17 was used to deter-
mine the statistical significance of the differences between each
set of quadruplicate measurements and the untreated (i.e., not
exposed to eNMs) cell population (Figure S2, SI). The strictly
standardized mean difference (SSMD) for two independent
populations, 1 and 2 (e.g., quadruplicate responses and untreated
samples) is estimated as follows:

SSMD ¼ X
_
1 -X

_
2

n1 - 1
n1

s21 þ
n2 - 1
n2

s22

ð1Þ

where X1 and X2 are the averages of each population, n1 and n2
the corresponding population sizes (i.e., n1 = 4 and n2 = 64) and
s1 and s2 are estimates of the standard deviation of each popu-
lation. The SSMD, similar to Student’s t-test, measures the signi-
ficance of differences between the two populations while account-
ing for their intrinsic variability. However, unlike the SSMD, the
student t-test, under the assumption of unequal variances, tends to
underestimate the likelihood of population similarity (i.e., lower p-
values) with increasing sample size.17 For example, SSMD g 3
indicates that the probability that a value from the first population
being greater than a value from the second population is >99.9%
when the difference is normally distributed, or >95%when the dif-
ference has a unimodal distribution with a finite variance.17 Follow-
ing the above scheme, the SPR of themacrophage cells, exposed to
a nanoparticle n at a given concentration C, was described by an
SPR vector SPRn

C = {SSMDNFkB(t=3h), ...,SSMDNFkB(t=24h), ...,
SSMDp53(t=3h), ..., SSMDp53(t=24h)}, whose forty components are
the SSMD (eq 1) values of the normalized luminescence corre-
sponding to the ten studied pathways at each of the four exposure
times.
Similarity Analysis. SOM representation (as two-dimen-

sional projection) of the multidimensional HTS SPR data was
accomplished as depicted in Figure 2. SOM identification of
similar SPR vectors (i.e., SPR vectors that are close to each other
in the native topology of the data), corresponding to similar pat-
terns of signaling pathway activity, can aid in the identification of
common mechanisms of action for specific types of nanoparti-
cles. Details of the implementation and properties of the SOM
analysis can be found elsewhere.7 Briefly, SOM provides an or-
dered projection of the SPR vectors while preserving the topo-
logy of the original HTS data set (i.e., relative distances among
the processed SPR vectors) and facilitates the identification and
visualization of groups of eNMs that trigger similar biological
responses. The SOM was developed utilizing an optimal 20 (SI)
two-dimensional hexagonal 8 ! 5 grid (i.e., 40 SOM units,
Figure 2). Each SOM unit k was characterized by a weighted
average of its clustered SPR vectors yielding a prototype vector pk
for the unit (Figure 2). During themap construction process pro-
totype vectors adapt such that similar map units (i.e., in terms of
prototype vectors) are organized closer to each other. The SOM
structure can be conveniently visualized as a set of 40 consecutive

layers (i.e., component planes; 20), each representing the re-
sponses (in terms of the prototype vector components) from one
of the specific ten signaling pathway at one of the four different
exposure times (Figure 2). Accordingly, the component planes
(c-planes) are displayed by a color code corresponding to each
individual prototype vector component over the SOM.
Clustering of HTS Data. Identification of clusters of SOM

units (Figure 2) can be accomplished by determining the simi-
larity among the prototype vectors.19-21 However, cluster
validation is challenging for HTS data since: (a) lack of prior
knowledge about the expected cluster structure, and (b) cluster-
ing of a data set of high dimensionality is sensitive to data quality
(e.g., both in terms of data set size and data uncertainty). Ac-
cordingly, in the present work identifiedHTS data set clusters were
validated using a consensus-clustering method.15 The approach
consisted of randomly sampling the postprocessed HTS data set
with replacement (i.e., allowing the selection of the same SPR vector
multiple times) to generate replicate data sets of the same order of
the original HTS data set. Subsequently, the SOM algorithm was
applied to cluster the SPR vectors in each replicate data set. The
cumulative number of clustering runs in which two response vectors
were grouped together in the same SOM unit formed the elements
of a symmetric consensusmatrixM (dimension = nxn, where n = 63,
the total number of SPR vectors in the HTS data set). This matrix
was then normalized (forming a coclustering index matrix) by
dividing each element (i.e., representative of an SPR pair) by the
total number of times that the corresponding SPR pair is found in
the total number of replicate data sets.
The validity of a given SOM cluster (either SOM unit or clus-

ter), k, was quantified in terms of a consensus index CI(k), from
the elements of the normalized consensus matrix M as follows:

CIðkÞ ¼ 1
NkðNk - 1Þ=2

i, j∈Ik
i 6¼ j

Mði, jÞ ð2Þ

Figure 2. Structure and principal elements of the SOMused the current
work. The gray plane (left) represents the SOMgrid composed by 40 units
arranged in a hexagonal configuration of 8 ! 5 units. Subsequent color
slices correspond to the visualization of each of the 40 component planes
(c-planes) corresponding to each signaling pathway at each exposure
time (3-24 h). The plane on the right side depicts the clustering of
similar SOM units based on the distance matrix.
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where Ik is the set of consensus matrix indices corresponding to
the SPR vectors in cluster k and Nk is the number of elements
(SPR vectors) in the same cluster.16 The consensus index is in the
range of [0,1] where values near unity are indicative of increasing
cluster validity (i.e., the SPR vectors cluster together with in-
creased validity irrespective of the perturbations introduced in
the HTS data set).

’RESULTS AND DISCUSSION

SOM Clustering of Signaling-Pathway Response Data.
Validation of SOM units (i.e., grouping of SPR vectors) was
assessed via the consensus clustering approach (eq 2). As shown
in Figure 3a, grouping of SPR vectors within SOM units was
highly robust and reproducible as verified by the consensus
clustering analysis. Two SOM units had the low consensus index
values of 0.83 and 0.85. The first contained nanoparticles of Ag
(12.5 μg/mL and 50 μg/mL), Al2O3 (25 μg/mL), and SiO2
(3.12 μg/mL) and the second contained Ag (0.375 μg/mL and
1.6 μg/mL), Al2O3 (0.375 μg/mL), and ZnO at (25 μg/mL).
The above results and the fact that the remaining SOM units had
consensus index values above about 0.9 indicate that the SOM
developed from the HTS data reflects valid SOM grouping
(i.e., units) of SPR vectors.
Five SOM clusters were identified, each representing a group

of similar SOM units, based on the similarities (distances) be-
tween neighboring SOM units and validated via a consensus ap-
proach (see Consensus Matrix, SI Figure S4). The consensus
index values for Clusters I and II (Figure 4b) were of 0.91 and
0.94, respectively. Cluster I included SPR vectors corresponding
to ZnO (50 and 100 μg/mL) and Pt (25, 50, and 100 μg/mL) at
high concentrations while Cluster II consisted of SPR vectors
corresponding to ZnO nanoparticles at concentration of 0.75 -

12.5 μg/mL. Cluster V (Figure 3b) had a consensus index of 0.89
and included the SPR vectors corresponding to SiO2, Al2O3 and
Fe3O4 nanoparticles at high concentrations (g25 μg/mL), as
well as those of SiO2, Al2O3, Fe3O4, Au, Pt, ZnO nanoparticles at
moderate or low concentrations (<12.5 μg/mL). Finally, it is
noted that although clusters III and IV (Figure 3b) had slightly
lower consensus indices of 0.71 and 0.69, respectively, these values
can be viewed as indicative of a clear clustering tendency. Finally,
it is noted that for comparison, a cluster heat map of the prepro-
cessedHTSdatawas also developed and details are provided in the
Supporting Information (Figure S3).
Relationships between Signaling-Pathway Response (SPR)

Vectors. A color-coded SOM representation (i.e., c-planes) of the
signaling-pathway responses (SI, Table S1) is shown in Figure 4.
In this representation, each c-plane displays the SOM average of
the components of the SPR vectors for each unit. The content of
each of the SOM units in the forty c-planes (Figure 4) is identified
with the specific nanoparticles (at a given concentration) through
the unit labeling shown in Figure 3.
As is revealed in Figure 4, after exposure of 3 to 6 h, there is an

incipient up-regulation tendency of the NF- B, MAPK/JNK,
and MAPK/ERK stress and inflammatory signaling pathways
attributed to nanoparticles identified as members of cluster V
(Figure 3b). Macrophages are known to be stimulated to secrete
inflammatory mediators, such as cytokines and chemokines, when
exposed to foreign substances to enhance an immune response.22

Interestingly, significant down-regulation (blue colors in Figure 4)
of the inflammatory NF- B, MAPK/JNK, and PKC/Ca2þ signal-
ing pathways is observed in clusters I and II (Figure 3b) that are
specifically linked to the responses associated with exposure to
ZnO nanoparticles (Figure 3b).
Inspection of the c-planes (Figure 4) reveals that after 12 h of

exposure, there is an additional significant up-regulation of p53,

Figure 3. Clustering of nanoparticles according to their signaling pathway response profile using the SOM. (a) Visualization of the consensus index for
each SOM unit. (b) Clusters obtained from the SOM distance matrix and its corresponding consensus index.
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c-Myc, and cell cycle signaling-pathways (areas in red color in
Figure 4). Specifically, nanoparticles in clusters I and II (Figure 3b)
induced a significant up-regulation of the p53/DNA damage path-
way. The nanoparticles responsible for these signaling pathway re-
sponses were ZnOandPt at concentration ranges of 0.75-100μg/
mL and 25-100 μg/mL, respectively. A highly correlated pathway
response is also observed in the c-plane (Figure 4) corresponding
to the cell cycle/E2F pathway, which is responsible for delaying or
halting cell cycle progression in response to DNA damage through
the regulation of the G1/S cell cycle checkpoint.23

Interestingly, the c-Myc pathway c-plane shows significant up-
regulation (Figure 4) induced by ZnO at high concentrations
(50-100 μg/mL) and Pt (25-100 μg/mL) nanoparticles in
cluster I (Figure 3b). Deregulation of c-Myc may have a severe
effect on normal cell functions, including proliferation, differ-
entiation, and apoptosis.24 It is plausible that the stimulation of
apoptosis by c-Myc may not always be directly linked to cell
cycling; it can also arise through indirect actions that culminate in
DNA damage.25 The combined response observed in these path-
ways is consistent with the known fact that damaged DNA in
mammalian cells triggers the production of proteins that initiate
cell-cycle arrest, DNA repair, and ultimately may induce apop-
tosis.26 The possible induction of cell death by nanoparticles in
cluster I (Figure 3b), is supported by the down-regulation of the
PKC/Ca2þ pathway observed after 6 h. Indeed, there is con-
siderable evidence that a number of toxicants alter Ca2þ signaling
processes andmay induce cell death by apoptosis.27 For instance,
the exposure of human cells to Pt nanoparticles results in geno-
toxic stress that increases DNA damage, accumulation of cells at
the S-phase of cell cycle, and apoptosis.28 Genotoxic effects were
also observed in human epidermal cells after 6 h of exposure to
low concentrations of ZnO nanoparticles.29 This genotoxic po-
tential may be mediated through lipid peroxidation and oxidative
stress.30

The down-regulation of the hypoxia pathway (Figure 4) in-
duced by the same group of nanoparticles (ZnO and Pt) could be
attributed to the fact that high expression levels of p53 lead to a
decrease in HIF-1R protein levels and thereby eliminate the acti-
vity of the HIF-1 reporter.31 Finally, there was significant de-
crease in the response of the cell cycle, c-Myc, and DNA damage
signaling pathways after prolonged exposure to nanoparticles
(24 h). It is possible that these results may have been affected by

Figure 4. Component planes corresponding to the biological response (up-regulation/down-regulation) of the 10 cell signaling pathways for the RAW
264.7 macrophage cells at 3, 6, 12, and 24 h of exposure to the seven nanoparticles (Table 1).

Figure 5. Sublethal pro-inflammatory signatures at 3, 6, 12, and 24 h of
exposure corresponding to SPR profiles in Cluster V. The error bars
indicate the within-cluster variability of each signaling pathway.
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cytotoxicity of ZnO and Pt nanoparticles (Cluster I in Figure 3b),
as indicated by a significant reduction in the luminescence signal
associated with TRE- control cells (not shown).
Extraction of Signaling-Pathway Response Signatures.

Similarity in terms of the biological response of the five SOM
clusters was evaluated by comparing their averaged pathways
response. Accordingly, the prototype vector components
(i.e., SSMD values) of the SOM units in each cluster (Figure 3b)
were averaged to obtain distinct pathway response (PR) signa-
tures for each cluster (Figures 5 and 6). In this representation
|SSMD| ≈ 0.5 indicates a weak effect 17 with a probability less
than about 70% of a response that is significantly different from
the untreated cells (SI). Conversely, for |SSMD| > 0.5 the effects
are stronger (SI) with higher probability of significant up or
down-regulation of the signaling pathway as observed in the PR
signatures for clusters I, II, and V (Figures 5 and 6). The signaling
PR signatures for these clusters suggest that the significant re-
sponses (i.e., pathways with the highest SSMD values) for the
above clusters are associated with sublethal pro-inflammatory
response (Cluster V) and lethal response including DNAdamage
(Clusters I and II). In contrast with the above, reliable biological
interpretation could not be derived from the PR signatures for
Clusters III and IV (not shown) since these clusters had low
consensus clustering indices (Figure 3b) and low |SSMD| values
(e.g., mostly |SSMD| < 0.5).
The sublethal response inferred in Cluster V (Figure 5) can

only be considered as a moderate biological effect with a pro-
bability in the range 70-80% of being significantly different from
the untreated cells. However, the PR signatures inCluster V,which
includes silica and alumina, have their more significant compo-
nents in pathways related to ROS generation and inflammatory
responses (e.g., NF- B, MAPK/JNK, and MAPK/ERK). It has

been reported that exposure to SiO2 nanoparticles could lead to
cellular morphological modifications, mitochondrial dysfunction,
and oxidative stress by generation of intracellular ROS.32 It is
interesting to note that ROS generation has been reported to
trigger pro-inflammatory responses, both in vivo and in vitro,
by changes in the expression levels of distinct genes and path-
ways related to inflammatory responses and apoptosis including
MAPK/ERK kinase, NF- B, and AP-1.33,34 Further, alumina
nanoparticles have been shown to initiate inflammatory events in
macrophages, including secretion of pro-inflammatory cytokines
and interaction with neighboring cells.35 Activator protein-1 (AP-1)
has also been demonstrated to be redox sensitive and its activation
has been linked to both exogenous oxidants 36 and ligand-induced
ROS.37 ROS has also been reported to activate serine/threonine
phosphorylation processes (e.g., regulation of serine/threonine
kinases of the MAPK family including ERKs and JNKs).38

Significant PR signatures are observed for clusters I and II
(Figure 3b). In cluster II (ZnO nanoparticles at 0.75-12.5 μg/
mL) themost significant signaling pathways are related to TGF-β
(SMAD), cell cycle (E2F), and DNA damage (p53) (Figures 4
and 6). The activity in the genotoxicity-related pathway (p53/
DNA damage) is more evident after a 12-h exposure period with
SSMD > 1.5, which corresponds to a significant difference (pro-
bability >80%) between the response of cells exposed to low ZnO
concentrations (0.75-12.5 μg/mL) relative to the response of
untreated cells. The correlation between the c-planes (Figure 4)
corresponding to E2F and p53 (i.e., both showing significant re-
sponse in the same SOM units) is consistent with the suggestion
that significant DNA damage induced by the ZnO nanoparticles
triggers cell cycle arrest. The above two pathways also appear to be
significant for nanoparticles in cluster I (Figure 3b). However, at
the higher ZnO and Pt nanoparticle concentrations (>25 μg/mL)

Figure 6. Lethal genotoxic signatures of ZnO and Pt. The error bars indicate the within-cluster variability of each signaling pathway. (a) Response
signatures at 3, 6, 12, and 24 h of exposure corresponding to SPR profiles in Cluster II, (b) Response signatures at 3, 6, 12, and 24 h of exposure cor-
responding to SPR profiles in Cluster I.
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more significant genotoxic effects (i.e., larger SSMD values) were
observed relative to the untreated cells. After 12 h exposure, DNA
damage (p53), cell cycle (E2F), and c-Myc (Myc) pathways
displayed significant response levels (i.e., SSMD = 5 for DNA
damage with a >99.9% probability of being different relative to
the response of the untreated cells). The above response decreased
significantly after a 24-h exposure, possibly due to the cytotoxicity
of the nanomaterials and the corresponding decline in the mea-
sured luminescence.
In summary, SOM enabled detailed analysis of the clustering

structure of the SPRs induced by a set of seven Me and MeO
nanoparticles to which RAW 264.7 macrophage cells were
exposed. The SOM analysis identified two groups of SPR signa-
tures corresponding to (i) sublethal pro-inflammatory responses
that are possibly related to ROS generation, and (ii) lethal geno-
toxic responses after exposure to ZnO and Pt nanoparticles at
high concentrations. Comparison of the SOM c-planes identified
relevant relationships between the cell signaling pathways. The
current work demonstrates that the Self-Organizing Map is an
effective tool for the analysis of HTS nanoparticle data that com-
plements and extends the data mining capabilities of more tradi-
tional techniques such as cluster heat maps. Finally, it is impor-
tant to recognize that notwithstanding the power of SOM or
other methods for knowledge extraction from multidimensional
nanoparticle HTS toxicity data sets, definitive generalizations
and conclusions will require significantly expanded databases of
bothHTS toxicity and physicochemical properties than presently
available.
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